This article was downloaded by:

On: 27 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK



#### Phosphorus, Sulfur, and Silicon and the Related Elements

Publication details, including instructions for authors and subscription information: <a href="http://www.informaworld.com/smpp/title~content=t713618290">http://www.informaworld.com/smpp/title~content=t713618290</a>

## Studies on Organophosphorus Compounds: The Synthesis of [1,3,2]-Diazaphospholes and [1,3,2]-Oxaazaphospholes

O. A. Omran<sup>a</sup>; H. M. Moustafa<sup>a</sup>
<sup>a</sup> Chemistry Department, Sohag, Egypt

To cite this Article Omran, O. A. and Moustafa, H. M.(2006) 'Studies on Organophosphorus Compounds: The Synthesis of [1,3,2]-Diazaphospholes and [1,3,2]-Oxaazaphospholes', Phosphorus, Sulfur, and Silicon and the Related Elements, 181: [1,2519-2528]

To link to this Article: DOI: 10.1080/10426500600754794 URL: http://dx.doi.org/10.1080/10426500600754794

#### PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Phosphorus, Sulfur, and Silicon, 181:2519-2528, 2006

Copyright © Taylor & Francis Group, LLC ISSN: 1042-6507 print / 1563-5325 online

DOI: 10.1080/10426500600754794



# Studies on Organophosphorus Compounds: The Synthesis of [1,3,2]-Diazaphospholes and [1,3,2]-Oxaazaphospholes

O. A. Omran H. M. Moustafa Chemistry Department, Sohag, Egypt

A number of spiro[cyclopentane (cyclohexane, and cycloheptane)-1,4'-perhydro-[1,3,2]diazaphosphole] derivatives (3a-c, 5a-c, 11a-c, and 12a-c) and spiro-[cyclopentane (cyclohexane, and cycloheptane)-1,4'-perhydro[1,3,2]oxaazaphos-phole] derivatives (7a-c) were prepared via an interaction of 2,4-bis-(4-methoxy-phenyl)-1,3,2,4-dithiaphosphetane-2,4-disulphide (1) with substances containing two functional groups.

**Keywords** 1-Phenylamino-1-cyanocycloalkanes; 2,4-bis-(4-methoxyphenyl)-1,3,2,4-dithiaphosphetane-2,4-disulphide

#### INTRODUCTION

It is well known that 2,4-bis-(4-methoxyphenyl)-1,3,2,4-dithiaphosphetane-2,4-disulphide (Lawesson's Reagent, [LR]) is a most effective and versatile thiation reagent for different cabonyl compounds. The nucleophiles attack LR at the phosphorus atom and form phosphorus heterocycles. In view of the latest development and also in continuation of our study of phosphorus hetero-cycles, In this article it was of interest to synthesize spiro[1,3,2]diazaphospholes and spiro[1,3,2]oxaazaphospholes from the reaction of LR with other classes of substrates with two functional groups.

#### **RESULTS AND DISCUSSION**

The reaction of 1-phenylamino-1-cyanocyclopentane(cyclohexane, and cyclo-heptane)<sup>14</sup> (**2a–c**) with LR (**1**) in boiling acetonitrile afforded 2'-(4-methoxy-phenyl)-4'-phenylspiro[cyclopentane (cyclohexane, and

Received February 26, 2006; accepted April 16, 2006.

Address correspondence to H. M. Moustafa, Chemistry Department, Faculty of Science, Sohag, Egypt. E-mail: hassa20002000@yahoo.com

cycloheptane)-1,4'-perhy-dro[1,3,2]diazaphosphole]-2',5'-disulfides (**3a–c**). The reaction pathway was assumed to proceed via a nucleophilic attack of the amino group on the phosphorus of LR followed by a P-SH addition to the nitrile group and subsequent rearrangement, high which yielded compounds **3a–c** (*cf.* Scheme 1). The IR spectra of compounds **3a–c** showed the absence of bands corresponding to cyano groups while exhibiting the characteristic absorption band at 651, 642, and 659 cm<sup>-1</sup> for P=S, respectively. H NMR spectra of compounds **3a–c** exhibited a singlet at 3.9 ppm corresponding to OCH<sub>3</sub> (*cf.* Table I).

PhNH CN Ph-N C=N CH<sub>3</sub>O Ph-N NH Ph-N S

$$\begin{array}{c}
CH_3O & \longrightarrow & S \\
Ph-N & \longrightarrow & S \\
Ph-N & \longrightarrow & S \\
Ph-N & \longrightarrow & S \\
NH & \longrightarrow & S \\$$

#### **SCHEME 1**

The treatment of compounds **2a–c** with sodium metal in ethanol afforded the corresponding amines **4a–c** in good yield. IR spectra of compounds **4a–c** showed the absence of absorption bands corresponding to CN groups and the appearance of new bands corresponding to NH<sub>2</sub> groups (3163–3412 cm<sup>-1</sup>). The <sup>1</sup>H NMR (CDCl<sub>3</sub>) spectra of compounds **4a–c** are in agreement with the proposed structure (*cf.* Table I). Compounds **4a–c** were allowed to react with LR (**1**) in anhydrous benzene at 80°C to give 2′-(4-methoxyphenyl)-3′-phenylspiro[cyclopentane

TABLE I Analytical and Spectral Data of the New Compounds

| M.P.(°C)   | M.P.(°C)       | Viold | Mol Romm                                               | Analyt         | ical da                               | ıta Cac                  | Analytical data Cacd./found |                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|------------|----------------|-------|--------------------------------------------------------|----------------|---------------------------------------|--------------------------|-----------------------------|----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| no.        | solvent        | (%)   |                                                        | С              | Н                                     | N                        | S                           | $\mathrm{IR}(\mathrm{Cm}^{-1})$                    | $^1\mathrm{HNMR}~\partial~(\mathrm{ppm})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 3a         | 160<br>ethanol | 86    | $C_{19}H_{21}N_2OPS_2$ 58.74 (388.48) 58.50            | 58.74<br>58.50 | 5.45<br>5.27                          | 7.21<br>7.03             | 16.50<br>16.23              | 3212 (NH), 1246<br>(C–O), 651(P=S)                 | 11.2 (br, 1H, NH), 7.8–6.9 (m, 9H, arom.); 3.9 (s, 3H, OCH <sub>3</sub> ), 1.9–1.4 (m, 8H cordin CH <sub>2</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 3b         | 170<br>ethanol | 83    | $C_{20} H_{23} N_2 OPS_2 \\ (402.51)$                  | 59.68<br>59.30 | 5.75<br>5.58                          | 6.95                     | 15.93<br>15.72              | 3266 (NH), 1253<br>(C—O), 642 (P=S)                | 12.9 (br. 1H, NH), 7.8–6.7 (m, 9H, arom.); 3.9 (s, 3H, OCH <sub>3</sub> ), 1.9–1.2 (m, 10H, ordis CH <sub>2</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 3c         | 191<br>ethanol | 79    | $C_{21}H_{25}N_2OPS_2 \   60.55 \\ (416.53) \   60.21$ | 60.55 $60.21$  | 6.05                                  | 6.72                     | 15.93<br>15.73              | 3259 (NH), 1239<br>(C—O), 659 (P=S)                | 11.9 (br. 1H, NH), 7.8–7.0 (m, 9H, arom.); 3.9 (s, 3H, OCH <sub>3</sub> ), 1.9–1.2 (m, 19 H evelin CH <sub>2</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 4a         | Liquid         | 77    | $C_{12}H_{18}N_2\\ (190.29)$                           | 75.74<br>75.27 | $9.53 \\ 9.34$                        | 9.53 14.72<br>9.34 14.39 |                             | $3359, 3261, 3203$ $(\mathrm{NH}_2 + \mathrm{NH})$ | 11.1 (br. 1H, NH), 7.5–6.9 (m, 5H, arom.); 4.3 (br. 2H, NH <sub>2</sub> ); 2.8 (s, 2H, CH <sub>3</sub> ) 1 9–1 2 (m, 8 H. evelic CH <sub>3</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 4b         | Liquid         | 79    | $C_{13} H_{20} N_2 \\ (204.31)$                        | 76.42<br>76.01 | 9.86<br>9.61                          | 9.86 13.71<br>9.61 13.49 | I                           | 3412,3336,3230 (NH <sub>2</sub> + NH)              | 13.0 (br. 1H, NH), 7.5–6.9 (m, 5H, 9mm cm <sub>2</sub> ), 13.0 (br. 1H, NH), 7.5–6.9 (m, 5H, 9mm cm <sub>2</sub> ), 24.9 (br. 2H, NH <sub>2</sub> ); 28 (s, 2H, 9m <sub>2</sub> ), 10–11 (m, 10 H cm <sub>2</sub> ); CH <sub>2</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 4c         | Liquid         | 71    | $C_{14}H_{22}N_2\\ (218.34)$                           | 77.01          | 77.01 10.15 12.82<br>76.60 9.97 12.51 | 12.82<br>12.51           | I                           | 3389, 3298, 3163 (NH <sub>2</sub> + NH)            | 11.8 (br. 1H, NH), 7.5–6.9 (m, 5H,<br>7.5–6.9 (m, 5H,<br>7.5– |
| 5a         | 216 ethanol    | 61    | $C_{19}H_{23}N_2OPS \ (358.44)$                        | 63.66<br>63.31 | 6.46<br>6.29                          | 7.81<br>7.57             | 8.94                        | 3286 (NH), 661 (P=S)                               | 13.0 (br. 1H, NH), 7.5–6.8 (m, 9 H, arm.); 3.9 (s, 3H, OCH <sub>3</sub> ), 2.9 (s, 2H, CH <sub>2</sub> ), 1.9–1.3 (m, 8 H, eyelic CH <sub>2</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 5b         | 233<br>ethanol | 59    | $C_{20}H_{25}N_2OPS$ 64.49 (372.46) 64.07              | 64.49<br>64.07 | 6.76                                  | 7.52<br>7.33             | 8.60                        | 3299 (NH), 703<br>(P=S)                            | 10.6 (br, 1H, NH), 7.5–6.8 (m, 9 H, arom.); 3.9 (s, 3H, OCH <sub>3</sub> ), 2.9 (s, 2H, CH <sub>3</sub> ), 1.9–1.2 (m, 10 H, evelic CH <sub>2</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| <b>5</b> c | 240<br>ethanol | 89    | $C_{21}H_{27}N_2OPS$ 65.26 (386.49) 64.89              | 65.26<br>64.89 | 7.04                                  | 7.24                     | 8.29                        | 3271 (NH), 655 (P=S)                               | 3271 (NH), 655 (P=S) 10.6 (br, 1H, NH); 7.5-6.9 (m, 9H, arom.), 3.9 (s, 3H, OCH <sub>3</sub> ), 2.9 (s, 2H, CH <sub>2</sub> ), 1.9-1.1 (m, 12 H, cyclic CH <sub>2</sub> ) (Continued on next page)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

TABLE I Analytical and Spectral Data of the New Compounds

| Company   | M.P.(°C)       | Vield | Mol Form                                                            | Analyt         | ical D       | ata Cac        | Analytical Data Cacd./Found |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-----------|----------------|-------|---------------------------------------------------------------------|----------------|--------------|----------------|-----------------------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| No.       | Solvent        | (%)   | -                                                                   | С              | Н            | N              | S                           | $\mathrm{IR}\;(\mathrm{Cm}^{-1})$      | $^1\mathrm{HNMR}\ \partial\ (\mathrm{ppm})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| <b>6a</b> | Liquid         | 65    | $\substack{C_{12}H_{17}NO\\(191.27)}$                               | 75.35<br>74.94 | 8.95         | 7.32<br>7.17   | I                           | 3412 (OH), 3223<br>(NH)                | 10.9 (br, H, NH); 7.4-6.8 (m, 5H, arom.), 4.0 (s, 1H, OH), 3.1 (s, 2H, CH <sub>2</sub> ),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 7a        | 163<br>ethanol | 61    | $C_{19}H_{20}NO_2PS$ 58.59<br>(389.47) 58.21                        | 58.59<br>58.21 | 4.91         | 3.59           | 16.46<br>16.25              | 1244 (C–O), 661<br>(P=S)               | 1.9–1.2 (m, 8 H, cyclic CH <sub>2</sub> )<br>7.6–7.0 (m, 9H, arom.), 4.1 (s, 2H, OCH <sub>2</sub> ), 3.9 (s, 3H, OCH <sub>3</sub> ), 1.9–1.3 (m, OCH <sub>2</sub> ), 2.9 (s, 2H, OCH <sub>3</sub> ), 2.9 (m, OCH <sub>3</sub> ), 2.9 (m, OCH <sub>3</sub> ), 3.9 |
| 7b        | 198<br>ethanol | 59    | $C_{20}H_{22}NO_2PS$ 59.53 (403.49) 59.17                           | 59.53 $59.17$  | 5.49<br>5.27 | 3.47           | 15.89<br>15.69              | 1233 (C—O, 669<br>(P=S)                | 8 H, cyclic CH <sub>2</sub> )<br>7.6-7.0 (m, 9H, arom.), 4.2 (s, 2H,<br>7.0-(F <sub>2</sub> ), 3.9 (s, 3H, OCH <sub>3</sub> ), 1.9-1.2 (m,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 7c        | 186<br>ethanol | 89    | $ m C_{21}H_{24}NO_{2}PS~60.41 \ (417.52)~60.05$                    | 60.41<br>60.05 | 5.79 $5.61$  | 3.35<br>3.26   | 15.35 $15.16$               | 1249 (C—O), 655<br>(P=S)               | 10 H, cyclic Ch2)<br>7.6–7.0 (m, 9H, arom.), 4.2 (s, 2H,<br>OCH2), 3.9 (s, 3H, OCH3), 1.9–1.2 (m,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 8a        | 199<br>ethanol | 65    | $\substack{\text{C}_{19}\text{H}_{23}\text{N}_3\text{O}\\(309.41)}$ | 73.75<br>73.29 | 7.49<br>7.33 | 13.58<br>13.30 | I                           | 3276, 3209, 3148<br>(3 NH), 1649 (C=O) | 11.2, 10.8, 10.5(br, 3H, 3 NH), 7.3-6.7<br>11.2, 10.8, 10.5(br, 3H, 3 NH), 7.3-6.7<br>10.10 (m, arom.) 3.3 (s, 2H, CH <sub>2</sub> ),<br>10.10 (m, 19 H, amolio CH <sub>2</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 8b        | 186<br>dioxan  | 09    | $C_{20}H_{25}N_3O\\ (323.44)$                                       | 74.27<br>73.89 | 7.79         | 12.99<br>12.80 | I                           | 3295, 3200, 3147<br>(3 NH), 1644 (C=O) | 11.9, $10.78$ , $10.78$ , $10.78$ , $10.78$ , $10.78$ , $10.78$ , $10.10$ , $10.78$ , $10.10$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$ , $10.8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 8c        | 173<br>ethanol | 29    | $C_{21}H_{27}N_3O$ (337.46)                                         | 74.74<br>74.37 | 8.06         | 12.45<br>12.21 |                             | 3293, 3222, 3129<br>(3 NH), 1650 (C=O) | 12.7, 10.8, 10.5 (by 3H, 3 NH), 7.3-6.7 (m, 10 H, aron.) 3.3 (s, 2H, CH <sub>2</sub> ), $(m, 10 H, aron.)$ 3.3 (s, 2H, CH <sub>2</sub> ), $(m, 12 H, cvelic CH2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 9a        | 138<br>DMF     | 61    | $\substack{\text{C}_{19}\text{H}_{23}\text{N}_3\text{S}\\(325.47)}$ | 70.11<br>69.75 | 7.12<br>6.93 | 12.91<br>12.71 | 9.85<br>9.69                | 3271, 3139 (2 NH),<br>1410 (SH)        | 12.0 10.3 (br, 2H, 2 NH), 7.3–6.7 (m, 8<br>H, arom.), 4.5 (s, 1H, SH); 3.3 (s, 2H, CH), 1.9 (cH), 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 96        | 132<br>ethanol | 59    | $\substack{\text{C}_{20}\text{H}_{25}\text{N}_3\text{S}\\(339.50)}$ | 70.75<br>70.44 | 7.42<br>7.24 | 12.37<br>12.18 | 9.44                        | 3175, 3112 (2 NH),<br>1432 (SH)        | CH <sub>2</sub> ), 1.3–1.2 (m, o H, cycle CH <sub>2</sub> )<br>12.9, 11.7 (br, 2H, 2 NH), 7.3–6.7 (m, 8<br>H, arom.), 4.5 (s, 1H, SH); 3.3 (s, 2 H,<br>CH <sub>2</sub> ), 1.9–1.2 (m, 10 H, cyclic CH <sub>2</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

| 141<br>ethanol |          | 0                                                                | 71.34          | 7.69           | 11.88          | 9.06           | 3307, 3169 (2 NH),<br>1427 (SH)     | 11.1, 9.9 (br, 2H, 2 NH), 7.3–6.7 (m, 8 H, arom.), 4.3 (s, 1H, SH); 3.3 (s, 2H, CH <sub>2</sub> ), 1.9–1.2 (m, 12 H, cyclic CH <sub>2</sub> )            |
|----------------|----------|------------------------------------------------------------------|----------------|----------------|----------------|----------------|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
|                | 10       | $ m C_{19}H_{21}N_3 \ (291.41)$                                  | 78.31<br>77.94 | 7.26           | 14.42<br>14.23 |                | 3209 (NH), 1621<br>(C=N)            | 9.7 (br, 1H, NH), 7.5–7.0 (m, 10H, arom.), 3.4 (s, 2H, CH <sub>2</sub> ), 1.9–1.2 (m, 8 H, cyclic CH <sub>2</sub> )                                      |
|                | 6        | $ m C_{20}H_{23}N_3 \ (305.44)$                                  | 78.65<br>78.26 | 7.59           | 13.76<br>13.56 | I              | 3267 (NH), 1617<br>(C=N)            | 11.1(br, 1H, NH), 7.5–7.0 (m,10H, arom.), 3.4 (s, 2H, CH <sub>2</sub> ), 1.9–1.2 (m, 10 H, cyclic CH <sub>2</sub> )                                      |
| 1 67           | <b>~</b> | $ m C_{21}H_{25}N_{3} \ (319.46)$                                | 78.95<br>78.56 | 7.89           | 13.15 $13.01$  | I              | 3211 (NH), 1609<br>(C=N)            | 9.9 (br, 1H, NH), 7.5–7.0 (m, 10H, arom.), 3.4 (s, 2H, CH <sub>2</sub> ), 1.9–1.2 (m, 12 H, cyclic CH <sub>2</sub> )                                     |
|                | 61       | $\mathrm{C_{26}H_{28}N_{3}O_{2}PS}$<br>(477.56)                  | 65.39<br>65.03 | 5.91           | 8.79           | 6.71<br>6.59   | 3286 (NH), 1649<br>(C—O), 661 (P=S) | 9.9 (br, H, NH); 7.5–6.9 (m, 14H, arom.);<br>3.9 (s, 3H, OCH <sub>3</sub> ); 3.5 (s, 2H, CH <sub>2</sub> );<br>1.9–1.2 (m, 8 H, evelic CH <sub>2</sub> ) |
|                | 59       | $C_{27}H_{30}N_3O_2PS = (491.59)$                                | 65.97<br>65.60 | $6.15 \\ 6.00$ | 8.54           | 6.52           | 3213 (NH), 1646<br>(C=O), 669 (P=S) | 10.9 (br, H, NH); 7.5–6.9 (m, 14H, arom.); 3.9 (s, 3H, OCH <sub>3</sub> ); 3.5 (s, 2H, CH <sub>9</sub> ); 1.9–1.2 (m, 10 H, cyclic CH <sub>9</sub> )     |
|                | 89       | $ m C_{28}H_{32}N_3O_2PS \ (505.61)$                             | 66.51<br>66.15 | 6.38           | 8.33           | 6.34<br>6.17   | 3287 (NH), 1652<br>(C=O), 653 (P=S) | 10.3 (br, H, NH); 7.5–6.9 (m, 14H, arom.); 3.9 (s, 3H, OCH <sub>3</sub> ); 3.5 (s, 2H, CH <sub>2</sub> ); 1.9–1.1 (m, 12 H, evelic CH <sub>2</sub> )     |
|                | 65       | $C_{26}\mathrm{H}_{28}\mathrm{N}_{3}\mathrm{OPS}_{2}\\ (493.62)$ | 63.26<br>62.85 | 5.71           | 8.51           | 12.99<br>12.70 | 1410 (SH), 658 (P=S)                | 7.3–6.9 (m, 14H, arcm.), 4.5 (s, 1H, SH); 3.9 (s, 3H, OCH <sub>3</sub> ); 3.5 (s, 2H, CH <sub>2</sub> ), 1.9–1.2 (m, 8 H. cvelic CH <sub>2</sub> )       |
|                | 79       | $C_{27}H_{30}N_3OPS_2 \ (507.65)$                                | 63.88<br>63.47 | 5.95           | 8.27s<br>8.09  | 12.63<br>12.40 | 1429(SH), 670 (P=S)                 | 7.5–7.0 (m, 14H, arom.), 4.3 (s, 1H, SH), 3.9 (s, 3H, OCH <sub>3</sub> ), 3.6 (S, 2H, CH <sub>2</sub> ); 1.9–1.2 (m, 10 H, evelic CH <sub>2</sub> )      |
|                | 29       | $C_{28}H_{32}N_3OPS_2\\ (521.67)$                                | 64.46<br>64.12 | 6.18           | 8.05           | 12.29<br>12.09 | 1420 (SH), 673 (P=S)                | 7.5–7.0 (m, 14H, arom.), 4.3 (s, 1H, SH), 3.9 (s, 3H, OCH <sub>3</sub> ), 3.5 (S, 2H, CH <sub>2</sub> ); 1.9–1.1 (m, 12 H, cyclic CH <sub>2</sub> )      |

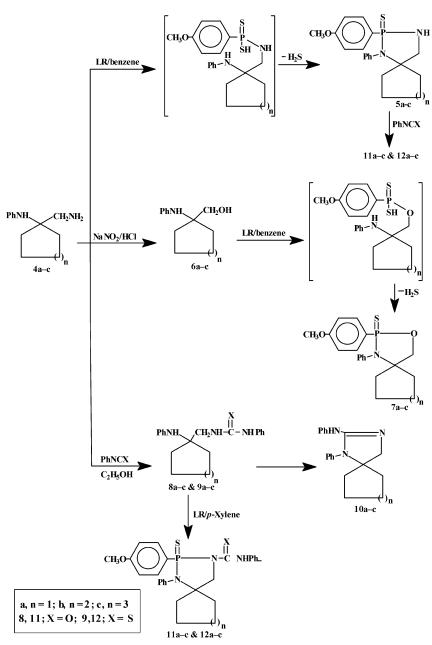
 $<sup>^</sup>b$ Satisfactory microanalysis obtained C, -0.47; H, -0.25; N, -0.39; S, -0.35.  $^c$ Measured by Nicolet FT-IR 710 spectrophotometer:  $^d$ Measured by  $^1$ HNMR LA 400 MHz (Jeol) Assiut University.

 $^a$ Uncorrected.

<sup>2523</sup> 

(cyclohexane, and cycloheptane)-1,4'-perhydro[1,3,2]diazaphosphole]-2'-disulfi-des (**5a-c**). As to the mechanism for the formation P-heterocycles **5a-c**, it is suggested that a nucleophilic attack on LR to give the intermediate, which at elevated temperature looses  $H_2S$  to give, compounds **5a-c** (cf. Scheme 2). The structures of these products were based on spectroscopic data and elemental analysis (cf. Table I).

Compounds **6b,c** were synthesized by Desai, <sup>15</sup> and this synthesis can be carried out in another route via the diazotization of compounds **4b,c**. Also, the diazotization of compound **4a** gave 1-anilinocyclopentanemethanol (**6a**). Compounds **6a-c** were then submitted to the reaction with LR in anhydrous benzene to give 2'-(4-methoxyphenyl)-3'-phenylspiro[cyclopentane (cyclohexane, and cycloheptane)-1,4'-perhydro[1,3,2]oxaazaphosphole]-2'-disulfides (**7a-c**) (cf. Scheme 2). The structures of the new products have been elucidated via analytical results and spectroscopic data (cf. Table I).


Moreover, the addition of compounds **4a–c** to phenyl isocyanate and/or phenyl isothiocyanate in ethanol at 26°C afforded the opened products **8a–c** and **9a-c**, respectively, via an addition of the amino groups of compounds **4a–c** to the isocyanate or isothiocyanate (*cf*. Scheme 2). The cyclized products **10a–c** were obtained by refluxing compounds **8a–c** and/or **9a–c** in N,N-dimethylaniline. The IR and <sup>1</sup>H NMR spectra of these compounds confirm the proposed structures (*cf*. Table I).

The reaction of compounds **8a-c** and/or **9a-c** with LR in refluxing *p*-xyl-ene afforded 2'(4-methoxyphenyl)-3'-phenylspiro[cyclopentane (cyclohexane and cycloheptane)-1,4'-perhydro[1,3,2]diazaphosphole]-1-ylphenylaminomethane-1-ones (**11a-c**) and 2'(4-methoxyphenyl)-3'-phenylspiro[cyclopentane (cyclohexane and cycloheptane)-1,4'-perhydro[1,3,2]diazaphosphole]-1-ylphenylaminometha-ne-1-thiones (**12a-c**), respectively. The same products **11a-c** and **12a-c** were also obtained through the reaction of compounds **5a-c** with phenyl isocyanate and/or phenyl isothiocyanate in boiling benzene. The structure of compounds **11a-c** and **12a-c** were confirmed on the basis of their elemental and spectral analyses (*cf.* Table I).

#### **EXPERIMENTAL**

The Synthesis of 2'-(4-Methoxyphenyl)-4'-phenylspiro [cyclopentane (Cyclohexane and Cycloheptane)-1,4'-Perhydro[1,3,2]diazaphosphole]-2',5'-disulfides (3a-c): General Procedure

2,4-bis-(4-methoxyphenyl)-1,3,2,4-dithiaphosphetane-2,4-disulphide (LR, 1) (2.02 g; 0.005 mole) and 1-phenylamino-1-cyanocyclopentane



#### **SCHEME 2**

(cyclohexane, and/or cycloheptane) (**2a–c**) (0.01 mol) were dissolved in acetonitrile (80 mL). The reaction mixture was refluxed for 6 h, concentrated and cooled the precipitate was filtered off, dried, and recrystallized from the suitable solvent to give compounds **3a–c**.

## The Synthesis of 1-Anilinocyclopentane(cyclohexane, and Cycoheptane)methyl-amine I4a-c: General Procedure

To a solution of the proper nitrile **2a–c** (1.0 g) in absolute ethanol (10 mL) was added 1.5 g of clean sodium. When all the sodium reacted (10–15 min.), the reaction mixture was cooled to about 20°C, and 15 mL of conc HCl was added. The reaction mixture was concentrated and cooled and 20 mL of 40% NaOH was added dropwise with shaking to the reaction mixture. The formed amine was extracted with chloroform and purified by distillation.

## The Synthesis of 1-Anilinocyclopentane (Cyclohexane and Cycloheptane)methanol 6a–c: General Procedure

To a stirred ice-cooled solution of the proper amine ( $\mathbf{4a-c}$ ) (0.01 mole) in 8 mL of conc HCl was added portionwise (0.83 g, 0.012 mole) of NaNO<sub>2</sub>. The mixture was kept at r.t. for 30 min and then poured onto crushed ice. The obtained solution was neutralized with NH<sub>4</sub>OH, and the separated oil was extracted with chloroform and purified by distillation to give compounds  $\mathbf{6a-c}$ .

The Synthesis of 2'-(4-Methoxyphenyl)-3'-phenylspiro [cyclopentane(cyclohexane and cycloheptane)-1,4'-Perhydro-[1,3,2]diazaphosphole]-2'-disulfides (5a-c) and 2'-(4-methoxyphenyl)-3'-phe-nylspiro[cyclopentane(cyclohexane and Cycloheptane)-1,4'-perhydro[1,3,2]oxaazaphosphole]-2'-disulfides (7a-c): General Procedure

A mixture of the proper amine (**4a–c**) (0.01 mole) and/or the proper hydroxylderivative (**6a–c**) (0.01 mole) and 2,4-bis-(4-methoxyphenyl)-1,3,2,4-dithiaphosphetane-2,4-disulphide (LR, **1**) (2.02 g, 0.005 mole) in dry benzene (80 mL) was refluxed for 5 h, concentrated, and cooled. The formed precipitate was filtered off, dried, and recrystallized from the suitable solvent to give compounds **5a–c** and **7a–c**, respectively.

### The Synthesis of Compounds 8a-c and 9a-c: General Procedure

To a stirred solution of the proper amine **4a-c** (0.01 mole) in 30 mL of absolute ethanol was added phenyl isocyanate (1.19 g, 0.01 mole)

or phenyl isothiocyanate (1.35 g, 0.01 mole). The reaction mixture was stirred at r.t. for 1 hour. The formed precipitate was filtered off, dried, and recrystallized from the suitable solvent to give compounds **8a–c** and **9a–c**, respectively.

# The Synthesis of 3'-Phenyl-2'-phenylaminospiro [cyclopentane(cyclohexane and Cycloheptane)-1,4'-(3',5'-dihydroimidazoles)] (10a-c): General Procedure

Compound **8a–c** and/or **9a–c** (0.01 mol) was refluxed in N,N-dimethylaniline (10 mL) for 12 h. The solvent was concentrated, cooled, and filtered off. The solid product was recrystallized from the suitable solvent (*cf.* Table I).

# The Synthesis of 2'-(4-Methoxyphenyl)-3'phenylspiro[cyclopentane(cyclohexane and Cycloheptane)-1,4'-Perhydro[1,3,2]diazaphosphole]-1ylphenylamino-methane-1-ones (11a-c) or -1-thiones (12a-c): General Procedure

2,4-bis-(4-methoxyphenyl)-1,3,2,4-dithiaphosphetane-2,4-disulphide (LR, 1) (2.02 g; 0.005 mole) and the proper compound **8a-c** and/or **9a-c** (0.01 mol) were dissolved in p-xylene (60 mL). The reaction mixture was refluxed for 6 h, concentrated, and cooled; the precipitate was filtered off, dried, and recrystallized from the proper solvent to give compounds **11a-c** and **12a-c**, respectively.

## The Alternate Synthesis of Compounds 11a-c and 12a-c: General Procedure

Compound **5a-c** (0.01 mol), phenyl isocyanate and/or pheny isothiocyanate (0.01 mol) and dry benzene (70 mL) were refluxed together for 3 h when colorless crystals separated out, which were filtered and washed with warm benzene to afford compounds **11a-c** and **12a-c**.

#### REFERENCES

- [1] J. C. Thomas, J. Org. Chem., 67, 6461 (2002).
- [2] M. Ori and T. Nishio, *Heterocycles*, **52**, 111 (2000).
- [3] T. Nishio and H. Sekiguchi, *Tetrahedron*, **55**, 5017 (1999).
- [4] T. Nishio, J. Org. Chem., 62, 1106 (1997).
- [5] A. M. Polozov, S. E. Cremer, P. E. Fanwick, and E. Phillip, Can. J. Chem., 77, 1274 (1999).

- [6] B. Mohamed, E. M. Lotfi, and Z. Hedi, Phosphorus, Sulfur, and Silicon, 157, 145 (2000).
- [7] L. S. Boulous and H. A. Abd El-Malek, Heteroatom Chem., 10, 488 (1999).
- [8] A. A. El-Barbary and S.-O. Lawesson, Tetrahedron, 37, 2641 (1981).
- [9] C. S. Sarma and J. C. S. Kataky, Indian J. Chem., 38B, 464 (1999).
- [10] H. M. Moustafa, Phosphorus, Sulfur, and Silicon, 148, 131 (1999).
- [11] H. M. Moustafa, Phosphorus, Sulfur, and Silicon, 164, 11 (2000).
- [12] A. B. A. G. Ghattas, O. A. Abd Allah, and H. M. Moustafa, Phosphorus, Sulfur, and Silicon, 157, 1 (2000).
- [13] H. M. Moustafa, Phosphorus, Sulfur, and Silicon, 178, 1397 (2003).
- [14] M. S. Chande and S. K. Balel, Indian Journal of Chemistry, 35B, 377 (1996).
- [15] P. R. Desai, R. D. Desai, G. S. Saharia, and B. R. Sharma, J. Indian Chem. Soc., 40, 525 (1963).
- [16] B. S. Pedersen and S.-O. Lawesson, Tetrahedron, 35, 2433 (1979).